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End-linking is the process in which junctions that permanently connectl ends of polymers are introduced at
random. Sufficient end-linking causes a system of polymers to undergo a continuous equilibrium phase tran-
sition from a liquid to an amorphous solid state, i.e., to gel. This gelation transition is explored for a variety of
end-linked polymer systems, focusing on universal aspects, and is contrasted with that caused by cross-linking.
The dependency of this phase transition on the single-chain statistics and on the functionalityl of the junctions
is investigated. As an example of a single-chain statistics, stiff rods with a finite bending energy are considered.
The shear modulus and the distribution of localization lengths are calculated, and found to be universal near the
transition.@S1063-651X~96!01910-1#

PACS number~s!: 64.70.Dv, 61.41.1e

I. INTRODUCTION

Synthetic polymer networks consist of a great variety of
building blocks, and are synthesized by many distinct chemi-
cal methods. One of these methods is to introduce a suffi-
cient number of permanent cross-links between randomly
chosen monomers in a solution or melt of linear polymers. A
different way to build up networks is to prepare readily pro-
cessible oligomers having reactive monomers at their ends.
Under special treatment, these end monomers are able to
react with one another so as to form permanent junctions
between a certain numberl of ends of polymers@1#. We shall
refer to this process asend-linking. Both processes, cross-
linking and end-linking, lead to a thermodynamic phase tran-
sition from a fluid to an amorphous solid state. Recently, a
statistical mechanical theory of this equilibrium phase tran-
sition has been presented for the case of cross-linked flexible
polymers@2–4#, which has as its foundations the pioneering
work of Deam and Edwards@5#.

The aim of this paper is to extend the analysis reported in
@2–4# to the case of polymers that are end-linked and have
arbitrary stiffness. We investigate in detail the critical prop-
erties of the gelation transition. Forl52 we reproduce the
results obtained previously for cross-linking: The equation
for the gel fractionQ and the critical number of permanent
random junctionsmc are the same in both cases. Hence, for
these quantities it does not matter whether the permanent
junctions connect two monomers at the end of a chain~end-
linking! or at arbitrary segments of the chain~cross-linking!.
For l.2 the critical density of permanent random end-links
decreases withl , because each end-link represents a more
efficient constraint on the system. For the gel fraction we
find an equation, which—to the best of our knowledge—has
not been derived previously in the context of percolation
theory. The critical exponent of the gel fraction is, however,
the same as forl52 and for cross-linking.Q and mc are
completely independent of the single-chain statistics. The
latter does enter in our calculation of the localization length
and the shear modulus. The single-chain statistics determines
the radius of gyrationRg , which sets the length scale for the
localization length. Apart from that, the single-chain statis-

tics turn out to be irrelevant. In particular, the critical expo-
nents for the shear modulus and the localization length are
the same for stiff rods and flexible chains, for end-linked and
cross-linked networks. We also compute the distribution of
localization lengths near the transition: it is found to be uni-
versal, i.e., the same for cross-linking and for end-linking.

II. MODEL OF END-LINKED POLYMERS

We consider a system ofN identical linear polymers of
arclength L. The degrees of freedom are the~three-
dimensional! positions of the monomersRi(s), with
i51, . . . ,N and sP@0,L#. Two types of interactions be-
tween the monomers will be considered. Short-range interac-
tions among monomers are limited to a few neighbors along
the chain, and characterize the type of bond connecting
neighboring monomers.~In particular, the connectivity of the
chain is guaranteed by the short-range interactions.! We do
not specify the short-range interactionHsr„Ri(s)…, and only
assume that it preserves the rotational and translational in-
variance of the system. Later on, we shall compare flexible
chains to stiff rods, and discuss in detail which of our results
depend on the short-range interactions and which do not.
Interactions between segments that are distant along the
chain but close in~real! space are called long ranged. For
these we take excluded-volume interactions, so that the sys-
tem is characterized by the following Hamiltonian:

H5(
i51

N

Hsr„Ri~s!…1
1

2
v0 (

i , j51

N E
0

L

ds ds8d„Ri~s!2Rj~s8!….

~1!

Here,v0 characterizes the strength of the excluded-volume
interaction introduced by Edwards@9#. We find it convenient
to use a continuum description, and we have chosen units of
energy such thatb215kBT51.

An end-link of functionalityl connects the ends ofl poly-
mers, so that they occupy common spatial locations. A real-
ization of the end-linking process withM end-links, labeled
by e51, . . . ,M , is modeled by (l21)M constraints
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Ri e,1
~se,1!5•••5Ri e,l

~se,l ! ~ for e51, . . . ,M !, ~2!

where $ i e, j% j51
l is the set of polymers participating in end-

link e, and$se, j% j51
l ~with se, j50 orL) designate which end

of each of the participating polymers is in end-linke. The
partition function of the end-linked system, relative to that of
the uncross-linked system, is given by@4#

Z~$ i e,1 ,se,1 ;•••; i e,l ,se,l%!

5K )
e51

M Edxed„xe2Ri e,1
~se,1!…•••d„xe2Ri e,l

~se,l !…L
1

H

.

~3!

The expectation value is taken with respect to the statistical
weight exp(2H). The integration overxe is a convenient way
to express the constraints, which are symmetric in the indi-
ces.

Once an end-link has been established it remains perma-
nently. Hence, the set of indices$ i e,1 ,se,1 ; . . . ;i e,l ,se,l% are
quenched variables. The end-linking process is a stochastic
process. The monomers and polymers that participate in an
end-link are chosen randomly according to a probability dis-
tribution P($ i e,1 ,se,1 ; . . . ;i e,l ,se,l%). We assume that all
end-links are established in the fluid phase instantaneously.
Ends of polymers that happen to be close immediately prior
to the end-linking process are linked with a certain probabil-
ity. Therefore the statistics of such a process reflects the
correlations of the fluid phase. Following Deam and Edwards
@5#, we take for the probability distribution

P~$ i e,1 ,se,1 ;•••; i e,l ,se,l%!}Z~$ i e,1 ,se,1 ; . . . ;i e,l ,se,l%!.
~4!

For technical reasons we allow the number of cross-links
M to fluctuate, controlled by the parameterm2

PM~$ i e,1 ,se,1 ;•••; i e,l ,se,l%!

5
1

M !Z1 S m2Vl21

2Nl21 D MK )
e51

M E dxed„xe2Ri e,1
~se,1!…•••

3d„xe2Ri e,l
~se,l !…L

1

H

. ~5!

Here,Z1 is a normalization factor. The mean number of end
links @M # is a monotonic function ofm2, and is approxi-
mately given by@M #5(1/2)m2N ~see @6#!, and @•••# de-
notes an average over the quenched disorder with the distri-
butionPM .

III. VARIATIONAL CALCULATION

To calculate the disorder average of the free energyNf
we use the replica technique

2Nf5 lim
n→0

@Zn#21

n
. ~6!

We follow the strategy of simultaneously calculating the par-
tition function and the distribution of disorderPM . This can
be achieved by introducing one additional replica, denoted
by the replica index 0. To keep the notation simple we in-
troduce (n11)-fold replicated vectorsx̂[(x0, . . . ,xn) and
normalized sums( i[(1/N)( i51

N and(s[(1/2)(s50,L . By
performing the disorder average for positive integern we get

2Nn fn5
Zn112Z1
Z1

~7!

with

Zn115K expH m2Vl21N

2 Edx̂S (
i

(
s

d„x̂2R̂i~s!…D lJ L
n11

H

,

~8!

so thatf5 limn→0f n .
We introduce an order-parameter fieldV x̂ to decouple

different polymers from each other

Zn115K E DV x̂)
x̂

dS V x̂2(
i

(
s

d„x̂2R̂i~s!…D
3expS m2Vl21N

2 E dx̂V x̂
l D L

n11

H

. ~9!

The functional integral over the fieldsV x̂ is done in the
saddle-point approximation, yielding

f n
S~V̄x̂!5

m2

2
1

m2~ l21!Vl21

2 E dx̂V̄x̂
l

2 lnK expS m2l

2
Vl21E dx̂V̄x̂

l21(
s

d„x̂2R̂~s!…D L
n11

Hsr

.

~10!

The saddle-point equation forV̄x̂ is

V̄ x̂5

K (
s

d„x̂2R̂~s!…expS m2l

2
Vl21E dx̂V̄ x̂

l21(
s

d„x̂2R̂~s!…D L
n11

Hsr

K expS m2l

2
Vl21E dx̂V̄x̂

l21(
s

d„x̂2R̂~s!…D L
n11

Hsr
. ~11!
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Here, the angular brackets denote an average with the
(n11)-fold replicated short-range interactionHsr. Within
the saddle-point approximationV̄x̂ gives the disorder-
averaged static density fluctuations of the ends of the poly-
mers

V̄k̂5(
i

(
s

@^exp„i k̂•R̂i~s!…&#, ~12!

where we have made a~replicated! Fourier transform from
x̂ to k̂. To obtain Eqs.~10! and~11! we replaced thed func-
tional in Eq.~9! by its ~functional! Fourier integral represen-
tation, thus introducing the conjugate order-parameter field
V̂x̂ . We then performed the functional integrals overV x̂ and
V̂x̂ in the saddle-point approximation. Finally, we used one
of the saddle-point equations to eliminateV̂x̂ .

A nonzero value of the order parameter with at least two
~replica! components ofk̂ different from zero indicates the
appearance of random static density fluctuations without
long-range translational order. These issues have been dis-
cussed in detail in@4#. As in the case of cross-linking, the
absence of long-range translational order shows up in a van-
ishing of the order parameter in the one-replica sector, i.e.,
V̄k̂ with only one ~replica! component ofk̂ different from
zero vanishes at the saddle point, provided the excluded-
volume interactions have been chosen sufficiently strong to
prevent collapse.

We postpone the solution of the saddle-point equation to
Sec. VI, and first discuss a variational approximation based
on a simple intuitive picture of the amorphous solid state.
We expect that in the gel phase a nonzero fractionQ of
polymers are localized at random positions. By assuming
Gaussian fluctuations with a typical lengthscalej around the
preferred positions, we are led to the following variational
ansatz forV̄( k̂)

V̄~ k̂!5~12Q!d k̂, 0̂1Qd (
a50
n ka,0expS 2

j2

2 (
a50

n

ukau2D .
~13!

The second term reflects the fraction of ends that are part of
the infinite cluster. Thed function ensures macroscopic
translational invariance. The first term in Eq.~13! accounts
for those polymers that are still fluid.

The gel fractionQ and the localization lengthj are varia-
tional parameters, which are determined by a minimization
of f n

S . First, we insert the full ansatz, including both terms,
into Eq.~10!. Next, we expand the exponential of the second
term, generating a Landau-Ginzburg free energy for the
order-parameter field. The coefficients in this expansion are
the density correlations of a single polymer, e.g.,
^exp„i j21( i51

r k i•R(si)…&. From translational invariance we
know that^exp„i( i51

r k i•R(si)…&}d( iki ,0
. Rotational invari-

ance is used to calculate the moments ofj21k i•R(si)

^k i•R~si !k j•R~sj !&5 1
3k i•k j^R~si !•R~sj !&1

Hsr. ~14!

Near the transition,j21 is expected to be small, and it is only
necessary to calculate terms to orderj22.

Stationarity of the free energy with respect to the gel frac-
tion Q yields

12Q5expS m2l

2
„~12Q! l2121…D . ~15!

The gel fraction reflects the geometric character of the tran-
sition: a nonzero gel fraction indicates the appearance of an
infinite network. This does not depend on the building blocks
of the network, but only on the number of polymers that are
connected at any end-link. Forl52, Eq. ~15! was first de-
rived in the context of graph theory by Erdo˝s and Re´nyi
~reprinted in@8#!.

Equation~15! always has the solutionQ50, correspond-
ing to the liquid state. Form2.mc

252/l ( l21) an additional
solution appears, which emerges continuously fromQ50.
For um22mc

2u!1 we have

Q. l ~m22mc
2!. ~16!

To obtain an equation for the localization lengthj we de-
mand thatf n

S be stationary with respect toj2, which gives, to
leading order,

1

j2
5
4~m22mc

2!

~ l21!mc
2

1

Rg
2 , ~17!

whereRg
2 ([^uR(L)2R(0)u2&1

Hsr) is the mean square end-
to-end distance~proportional to the radius of gyration
squared!, which depends on the explicit form ofHsr and will
be discussed in Sec. IV.

To summarize, forl52 the equation for the gel fraction is
identical for the cases of cross-linking and end-linking. For
end-linking with l.2 we find an equation that reflects the
altered connectivity. As expected, the gel fraction is indepen-
dent of the chain statistics. The critical concentration of end-
links mc

2 depends onl , whereas the critical exponents for
Q andj depend neither onl nor on the chain statistics. The
statistics of a single polymer determines only a semimicro-
scopic length that sets the scale forj2.

It is tempting to enquire why a solidification transition
should occur for the case of end-linking withl52, in which
case the end-links merely join pairs of polymers, end to end.
However, our model of end-linking has no saturation, in the
sense that there is no prohibition on polymer ends participat-
ing in more than one end-link. This is not anticipated to be
significant for l>3, for which saturation does not prohibit
~nonlinear! network formation. However, it is crucial for the
~physically less important! case of l52, for which end-
linking with saturation would permit only the formation of
linear assemblies of macromolecules and, hence, would not
allow for network formation.

IV. RODS WITH A FINITE BENDING ENERGY

To calculate the radius of gyration, one has to choose a
particular short-range interaction. As an example, we review
the wormlike chain model, which was introduced by Kratky
and Porod@10#. We follow the approach of Saito, Takahashi,
and Yunaki@7#. The wormlike chain is a simple model, but is
rich enough to interpolate between the limit of totally stiff
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chains, for which it yields the length of the rodL for Rg , and
the limit of long flexible chains, for which it yieldsRg

2}L in
agreement with the Gaussian chain model. The polymer is
represented by a curveR(s) in three-dimensional space that
is parametrized by the arclengthsP@0,L#, such that
uu(s)u[udR(s)/dsu51. This implies that the total arclength
S[*0

Luu(s)uds5L is constant, modeling a thin rod that can
be bent but not stretched. The configuration of a single chain
R(s) is given by the location of one end vector, e.g.,R(0),
along withu(s) for all s, via

R~s!5R~0!1E
0

s

dsu~s!. ~18!

We assume a bending energy that can be expressed in terms
of derivatives of u(s): the straight configuration is the
ground state, and bending the rod costs energy according to

Hbend5
L

2 E0
L

dsuu̇~s!u2, ~19!

where u̇(s)[du(s)/ds. The bending elastic constant of the
chain is denoted byL. ~Kratky and Porod use a discretized
model. They consider a chain composed of many segments
of fixed lengthb and with a fixed angleQ between adjacent
bonds. Then they perform the limit of small bond lengths and
bond angles approachingp. The total polymer length is kept
constant, as is the ratiob/(11cosQ). Thereby they get the
same result forRg .) Higher-order derivatives ofu(s) de-
scribe interactions between more than two neighboring
monomers on a chain.

The probability for a conformation$u(s)% of a single
polymer is given by the Boltzmann weight

C~$u,R~0!%!5
1

z
expS 2

1

4DE0
L

dsuu̇~s!u2D , ~20a!

z5E dR~0!E Du expS 2
1

4DE0
L

dsuu̇~s!u2D ~20b!

D5
kBT

2L
, ~20c!

where we assume that the end vectorR(0) is uniformly dis-
tributed over the volume. To obtain expectation values of
physical quantities that depend only on tangent vectorsu at
different arclengths, one defines a transition probability

p~u1 ,s1 ;u0 ,s0![

E
u0

u1
DuexpS 2

1

4DEs0
s1
dsuu̇~s!u2D

E du1E
u0

u1
DuexpS 2

1

4DEs0
s1
dsuu̇~s!u2D

~21!

that a chain that has tangent vectoru0 at positions0 has
tangential vectoru1 at positions1. ~A simple discussion for
the case of Gaussian polymers is given in Chap. 2 of@11#.!
Then the expectation value of a quantityA„u(s1)… can be
calculated from the transition probability via

^A„u~s1!…&

5
*du0du1duLp~uL ,L;u1 ,s1!A~u1!p~u1 ,s1 ;u0,0!

*du0duLp~uL ,L;u0,0!
.

~22!

The transition probabilities satisfy the Fokker-Planck equa-
tion for a diffusion process on a unit sphere (uuu51)

]

]s1
p~u1 ,s1 ;u0 ,s0!5DL•Lp~u1 ,s1 ;u0 ,s0!. ~23!

The angular part of the Laplacian is denoted byL•L , and
acts onu1. Equation ~23! is to be solved with the initial
condition

p~u1 ,s0 ;u0 ,s0!5d~u02u1!. ~24!

In three dimensions the solution is given by

p~u1 ,s1 ;u0 ,s0!

5(
l50

`

e2 l ~ l11!D~s12s0! (
m52 l

l

Ylm~u1!Ylm* ~u0!, ~25!

whereYlm are the spherical harmonics. The radius of gyra-
tion then follows from

^uR~L !2R~0!u2&5K E
0

L

dsu~s!•E
0

L

ds8u~s8!L
52E

0

L

dsE
0

s

ds8^u~s!•u~s8!&, ~26!

in which ^u(s)•u(s8)& can be calculated using the transition
probability and the orthogonality of the spherical harmonics

^u~s!•u~s8!&5
1

4pE duLdusdus8du0p~uL ,L;us ,s!

3p~us ,s;us8,s8!p~us8,s8;u0,0!us•us8 ~27!

5exp„22D~s2s8!…. ~28!

Inserting Eq.~27! into Eq. ~26! we find

^uR~L !2R~0!u2&5
e22DL2112DL

2D2 . ~29!

This result has the expected asymptotics: short, stiff chains
~for which DL→0) have ^uR(L)2R(0)u2&→L, whereas
long, flexible chains ~for which DL→`) have
^uR(L)2R(0)u2&→L/D.

V. SHEAR MODULUS

The aim of this section is to calculate the free energy of
elastic deformations within our variational approach. The
partition function is invariant with respect to spatially uni-
form, replica-dependent displacements of the monomers:
Ri

a(s)→Ri
a(s)1ua ~for a50, . . . ,n). Hence, we expect

that almost-uniform displacements are low lying excitations,
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the energy of which goes to zero in the long wavelength
limit. To calculate their spectrum, we consider nonuniform
displacements of the thermodynamic degrees of freedom
only: Ri

a(s)→Ri
a(s)1u„Ri

a(s)… ~for a51, . . . ,n). The
a50 replica generates the end-link distribution in the un-
strained system and, hence, is not displaced.

Under this transformationV̄k̂→Ṽk̂ , with

dV[Ṽk̂2V̄k̂

5(
i

(
s

K ~ei(a51
n ka

•u„Ri
a

~s!…21!ei(
a50

n

ka
•Ri

a
~s!L , ~30a!

5
i

V(
q

(
a51

n

ka
•u~q!V̄~k0, . . . ,ka1q, . . . ,kn!

2
1

2V2 (
q1 ,q2

(
a,b51
aÞb

n

ka
•u~q1!k

b
•u~q2!

3V̄~k0, . . . ,ka1q1 , . . . ,k
b1q2 , . . . ,k

n!

2
1

2V2 (
q1 ,q2

(
a51

n

ka
•u~q1!k

a
•u~q2!

3V̄~k0, . . . ,ka1q11q2 , . . . , . . . ,k
n!, ~30b!

whereu„Ri
a(s)… is the elastic displacement field, andu(q) is

its Fourier transform. We restrict ourselves to displacement
fields u(R) that vary over lengthscales much larger
than the localization length j, and calculate
d f n[ f n(V̄1dV)2 f n(V̄) to second order inu. We find for
the elastic free energy

dF$u%5
1

2E d3r „B~uaa!21S~uab2 1
3dabucc!…, ~31!

where uab[ 1
2 (]

aub1]bua) is the ~linearized! strain field,
and summation is implied over repeated Cartesian indices
a51,2,3. To lowest nontrivial order inQ andj22 the shear
modulusS is given by

S5
N

V
kBT

l 2~ l21!2

1152
Q2

Rg
4

j4
. ~32!

Inserting Eqs.~16! and ~17! we find

S.
N

V
kBT

l 4

72

~m22mc
2!4

mc
4 . ~33!

This implies a critical exponent of 4, independent of the
statistics of a single polymer. In Ref.@4# we obtained a criti-
cal exponent of 2 because the variational ansatz that was
used in@4# did not take into account the fraction of delocal-
ized monomers, 12Q, in the amorphous solid state@see Eq.
~13!#. There is also a singular contribution to the bulk modu-
lus which is, however, dominated by regular contributions of
the uncross-linked system~that we are unable to calculate
from f n).

Mechanical measurements have been performed on copo-
lymerization ~corresponding to cross-linking! and polycon-

densation~corresponding to end-linking!. Whereas the ex-
perimental data reveal the same critical behavior for the
viscosity in the two systems, the critical exponentt for the
static shear modulus in the gel phase is different for copoly-
merization (t;2) and polycondensation (t;3) @12#. It is
unclear why the two linking mechanisms should produce dis-
tinct modulus exponents@13#. One possible explanation is
the size of the critical region~in which deviations from
mean-field behavior may be observable@14#!. The size of
this region depends on the distance between links along the
chain, and may possibly vary for different linking mecha-
nisms.

VI. DISTRIBUTION OF LOCALIZATION LENGTHS

In this section we apply the idea of solving the saddle-
point equation presented by Castillo, Goldbart, and Zippelius
@3,4# to the case of end-linking. The improvement of this
approach reflects the possibility that in the amorphous solid
state the localization length is not unique but instead has a
distribution.

The starting point of our calculation is the saddle-point
equation~11!. We are not able to find the general solution of
Eq. ~11!, and instead proceed with an ansatz for the self-
consistentV k̂ , viz.,

V k̂5~12Q!d k̂,0̂1Qd k̃,0v~ k̂2!, ~34!

parametrized by the variableQ and the functionv( k̂2).
Here, we use the notationk̃5(a50

n ka and k̂25(a50
n ukau2

for two permutation invariant combinations of$ka%a50
n .

Under fairly mild conditions, the technical restriction be-
ing thatv(z) must be analytic for Re(z)>0 and vanish suf-
ficiently fast at infinity, we can adopt a convenient alterna-
tive parametrization ofV k̂ ~see also Castillo, Goldbart, and
Zippelius @3#!:

V k̂5~12Q!d k̂,0̂1Qd k̃,0E
0

`

dt p~t!exp~2 k̂2/2t!.

~35!

This ansatz~35! can be motivated as follows. As in the pre-
vious sections, we assume that each end of a polymer (i ,s) is
either delocalized~with probability 12Q) or localized~with
probabilityQ) at a random mean position. About this posi-
tion it performs independent Gaussian thermal fluctuations,
characterized by an inverse square localization length
t( i ,s), which depends on (i ,s) and is not unique, in contrast
to the previous sections. The assumptions that~i! the mean
positions are independently and uniformly distributed
through the volume,~ii ! the localization lengths are indepen-
dently distributed with probability density p̃(t)
52j23p(j22), and~iii ! the replica symmetry is not broken
together lead to the ansatz hypothesized in Eq.~35!. Thus
p(t) can be interpreted as the distribution of inverse square
localization lengths.

By inserting this ansatz into the self-consistency condi-
tion, Eq. ~11!, we obtain
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~36!

where k5k(M ,l ) is the integer satisfying
M /( l21)<k,„M /( l21)…11, and theai ,r are defined by
the following recursive structure:

ak,15(
i51

k

~21!k2 i S l212~k2 i !
k2 i D S l21

i DViÃi , ~37a!

ai ,r5 (
j51

i2r11

aj ,1ai2 j ,r21 , ~37b!

ai ,r50 ~ for r. i !, ~37c!

Ãm5E )
i51

m

dk̂ id0,k̃ iE dt1•••dtmp~t1!•••p~tm!

3e2 k̂1
2/2t1

•••e2 k̂m
2 /2tm(

s
ei( j51

m k̂ j •R̂~s!. ~37d!

It can be shown by explicit calculation that all terms in-
cluded inHM are proportional tod0,q̃ . So, by passing to the
limit q̂2→0, via a sequence for whichq̃50, we can identify
from Eq. ~36! the self-consistency condition for the gel frac-
tion Q, viz.,

12Q5expS m2l

2
„~12Q! l2121…D , ~38!

which is the same as that derived from the variational calcu-
lations in Eq.~15!.

We now turn to the distribution of localization lengths,
and restrict our attention to the vicinity of the transition re-
gime in the solid state@e[2(m22mc

2)/mc
2!1#, where the

gel fraction is small~i.e.,Q!1) and the localization lengths
are large~i.e., typicallyj@Rg). Furthermore, we restrict our-
selves to the case of a Gaussian polymer with persistence
length l , for which the short-range Hamiltonian is

Hsr5
3

2l E0
L

dsU dR~s!

ds U2. ~39!

We adopts units of length in whichl L/351. We expect
scaling near the critical point, and introduce a scaling func-
tionP(u) via pe(t)5(2/e)P(2t/e). The hypothesized scal-
ing form is motivated by the results from the variational
calculations in the preceding section and, below, is shown
actually to solve the saddle-point equation.

By expanding Eq.~36! to lowest order ine, we arrive at
an integro-differential equation forP(u):

u2

2
Ṗ~u!5~12u!P~u!2E

0

u

du8P~u2u8!P~u8!1O~e!.

~40!

This is the same equation as that derived previously by
Castillo, Goldbart, and Zippelius@3# for cross-linked poly-
mers. We conclude that the distributionP(u) is a universal
feature of systems of randomly linked polymers, independent
of l and of whether the system is end-linked or cross-linked.

The asymptotics ofP(u) are given by

P~u!5H cu22e22/u if u!1;

3S au2
3

5De2au if u@1. ~41!

The coefficientsa.4.554 andb.1.678 can be obtained by
the numerical solution of Eq.~40!. Thus we find for the order
parameterV k̂

V k̂5S 12
e

l21D d k̂,0̂1
e

l21
d k̃,0v~A2k̂2/e!, ~42a!

v~ k̂2!5E
0

`

du P~u!e2 k̂2/2u. ~42b!

The variational ansatz~13! is recovered by approximating
the true distributionp(t) by d(t2e/2).

VII. CONCLUSIONS

We have addressed the equilibrium properties of systems
of polymers that have been permanently end-linked at ran-
dom, by developing appropriate techniques from the statisti-
cal mechanics of systems with quenched disorder. We have
considered the general case in which each end-link brings
togetherl ends of polymers. We have allowed for a broad
class of polymeric systems, including flexible, semiflexible
and rigid-rod molecules.

We have established that beyond a certain critical density
of end-links, of order one per polymer, the system undergoes
a continuous equilibrium thermodynamic phase transition,
from a liquid state~in which all polymers are delocalized! to
an amorphous solid state~in which a nonzero fraction of the
monomers are localized about preferred positions, those po-
sitions being aperiodically distributed in space!. For techni-
cal reasons, our results are restricted to the transition regime.

By using a simple variational hypothesis for the amor-
phous solid order parameter~in terms of the fraction of lo-
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calized polymers and a single characteristic length that de-
scribes the thermal position fluctuations of the monomers!,
we have determined that the fraction of localized polymers
~the so-called gel fraction! satisfies a simple equation. This
equation constitutes the extension~to the case of end-
linking! of a result first obtained in the context of random
graph theory~i.e., mean-field percolation! and subsequently
emerging from the replica-statistical mechanics of vulca-
nized polymer systems. From it, we demonstrate how the gel
fraction vanishes, as the amorphous solidification transition
is approached from the solid side.

Within the context of this variational hypothesis, we have
also determined that the characteristic length~i.e., the local-
ization length! diverges at the transition point coming from
the solid side. In addition, by considering the free-energy
cost of imposing a long-wavelength elastic shear strain, we
have constructed the elastic shear free energy of the amor-
phous solid state, and calculated the shear modulus. The
shear modulus is found to vanish at the transition from the
amorphous solid state to the liquid state.

We find that the critical behavior of the gel fraction, the
inverse localization length and the shear modulus are univer-
sal, in the sense that they are are independent of the end-link
functionality and are the same as those found for the case of
cross-linked polymer systems. On the other hand, the precise
forms of the critical end-link density, the gel fraction, the
localization length and the shear modulus do depend on the
end-link functionality. Furthermore, the localization length
depends on the nature of the constituent polymers, albeit in a
simple way through the single-chain mean-square end-to-end
distance.

Finally, by making a more refined hypothesis for the order

parameter, which allows for a statistical variation in the de-
gree to which the polymers are localized, we find an exact
~replica-symmetric! solution of the order parameter self-
consistency condition. As well as confirming the equation for
the gel fraction obtained from the simpler variational hypoth-
esis, this approach yields a self-consistent~nonlinear integro-
differential! equation for the distribution of localization
lengths. Upon suitably scaling the distribution with a~di-
verging! characteristic length, this equation is seen to be in-
dependent of the end-link functionality and, indeed, identical
to that obtained~and solved! earlier for the case of cross-
linked polymeric systems.

Our results reveal a broad universality to the phenomenon
of amorphous solidification in polymeric systems: whether
the random constraints are end-links of arbitrary functional-
ity or cross-links, and whether the constituent polymers are
flexible, semiflexible, or rigid, the essential features of the
amorphous solid that emerges upon sufficient linking—the
critical behavior of the gel fraction, the characteristic local-
ization length, the distribution of localization lengths, and
the shear modulus—are invariant.
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