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Universality of gelation: End-linking versus cross-linking and stiff rods versus flexible chains
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End-linking is the process in which junctions that permanently corinestls of polymers are introduced at
random. Sufficient end-linking causes a system of polymers to undergo a continuous equilibrium phase tran-
sition from a liquid to an amorphous solid state, i.e., to gel. This gelation transition is explored for a variety of
end-linked polymer systems, focusing on universal aspects, and is contrasted with that caused by cross-linking.
The dependency of this phase transition on the single-chain statistics and on the functiafatity junctions
is investigated. As an example of a single-chain statistics, stiff rods with a finite bending energy are considered.
The shear modulus and the distribution of localization lengths are calculated, and found to be universal near the
transition.[S1063-651X96)01910-1

PACS numbdps): 64.70.Dv, 61.4k-e

[. INTRODUCTION tics turn out to be irrelevant. In particular, the critical expo-
nents for the shear modulus and the localization length are
Synthetic polymer networks consist of a great variety ofthe same for stiff rods and flexible chains, for end-linked and
building blocks, and are synthesized by many distinct chemieross-linked networks. We also compute the distribution of
cal methods. One of these methods is to introduce a suffiocalization lengths near the transition: it is found to be uni-
cient number of permanent cross-links between randomlyersal, i.e., the same for cross-linking and for end-linking.
chosen monomers in a solution or melt of linear polymers. A
different way to build up networks is to prepare readily pro-
cessible oligomers having reactive monomers at their ends.
Under special treatment, these end monomers are able to We consider a system df identical linear polymers of
react with one another so as to form permanent junctionarclength L. The degrees of freedom are thghree-
between a certain numbkpf ends of polymer§l]. We shall  dimensiongl positions of the monomersR;(s), with
refer to this process asnd-linking Both processes, cross- i=1,... N and se[0,L]. Two types of interactions be-
linking and end-linking, lead to a thermodynamic phase trantween the monomers will be considered. Short-range interac-
sition from a fluid to an amorphous solid state. Recently, &ions among monomers are limited to a few neighbors along
statistical mechanical theory of this equilibrium phase tranthe chain, and characterize the type of bond connecting
sition has been presented for the case of cross-linked flexiblgeighboring monomergin particular, the connectivity of the
polymers[2—4], which has as its foundations the pioneeringchain is guaranteed by the short-range interactjon&e do
work of Deam and Edwards]. not specify the short-range interactieh(R;(s)), and only
The aim of this paper is to extend the analysis reported imassume that it preserves the rotational and translational in-
[2—-4] to the case of polymers that are end-linked and haveariance of the system. Later on, we shall compare flexible
arbitrary stiffness. We investigate in detail the critical prop-chains to stiff rods, and discuss in detail which of our results
erties of the gelation transition. Fbe=2 we reproduce the depend on the short-range interactions and which do not.
results obtained previously for cross-linking: The equationinteractions between segments that are distant along the
for the gel fractionQ and the critical number of permanent chain but close inrea) space are called long ranged. For
random junctionsu. are the same in both cases. Hence, forthese we take excluded-volume interactions, so that the sys-
these quantities it does not matter whether the permanemém is characterized by the following Hamiltonian:
junctions connect two monomers at the end of a clieid-
linking) or at arbitrary segments of the chdaross-linking. N 1 N L
For|>2 the critical density of permanent random end-links H = 2 He(Ri(S))+ =vg E f ds ds 8(Ri(s)—R;(s")).
decreases with, because each end-link represents a more =1 27N Jo
efficient constraint on the system. For the gel fraction we Y
find an equation, which—to the best of our knowledge—has
not been derived previously in the context of percolationHere,vy characterizes the strength of the excluded-volume
theory. The critical exponent of the gel fraction is, however,interaction introduced by Edward8]. We find it convenient
the same as fol=2 and for cross-linkingQ and . are  to use a continuum description, and we have chosen units of
completely independent of the single-chain statistics. Thenergy such thgB8 1=kgT=1.
latter does enter in our calculation of the localization length  An end-link of functionalityl connects the ends bfpoly-
and the shear modulus. The single-chain statistics determingsers, so that they occupy common spatial locations. A real-
the radius of gyratioR,, which sets the length scale for the ization of the end-linking process witi end-links, labeled
localization length. Apart from that, the single-chain statis-by e=1, ... M, is modeled by (—1)M constraints

IIl. MODEL OF END-LINKED POLYMERS
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Ri, (Se)=" =R (Se)) (for e=1,... M), (2) IIl. VARIATIONAL CALCULATION

To calculate the disorder average of the free enédy
Where{ie,j}}=l is the set of polymers participating in end- we use the replica technique
link e, and{se }j_; (with s, ;=0 orL) designate which end

of each of the participating polymers is in end-liek The o [Z2"1-1

partition function of the end-linked system, relative to that of —Nf= “mo (6)

the uncross-linked system, is given B} "

Z({ie1:Se1: " ilel Sel}) We follow the strategy of simultaneously calculating the par-

tition function and the distribution of disordé®,, . This can
be achieved by introducing one additional replica, denoted
by the replica index 0. To keep the notation simple we in-
troduce (+1)-fold replicated vecto@z(xo, ... X" and
() normalized sumE;=(1N)S]; and S =(1/2)S_o, . By

The expectation value is taken with respect to the statistice{?erformmg the disorder average for positive integave get
weight exp-H). The integration ovex, is a convenient way

H

M
= < (L[l fdxeé(xe_ Rie’l(se,l))‘ e 5(Xe_ Rie'|(se,l))>

1

to express the constraints, which are symmetric in the indi- z _z
n+1 1
ces. — ann:? @
Once an end-link has been established it remains perma- 1
nently. Hence, the set of indic§&,1,S¢1; - - - ;ie|,Se} are

quenched variables. The end-linking process is a stochastigith

process. The monomers and polymers that participate in an

end-link are chosen randomly according to a probability dis- 2y1-1N - A I\ H
tribution P({i¢1,Se1; - - - iiei:Se}). We assume that all Zn+1=<EXP{M—J’d>A<<2 > S(x— Ri(S))) ]>
end-links are established in the fluid phase instantaneously. 2 s Nt 1
Ends of polymers that happen to be close immediately prior €]
to the end-linking process are linked with a certain probabil-

ity. Therefore the statistics of such a process reflects thgg thatf =lim, _of,,.

COI’I’e|ati0nS Of the f|UId phase. FO”OWing Deam and EdWardS We introduce an Order_parameter f|d'u;( to decoup|e

[5], we take for the prObab”lty distribution different po|ymers from each other

P({ie,lvse,l; T ;ie,l ase,l})xz({ie,lase,l; cee ;ie,l -Se,l})-

(4) zn+1=< f DO & ng—iz ; 5(2—F“ei<s>))

For technical reasons we allow the number of cross-links quvlle o H
><exp( 5 j de;()>

M to fluctuate, controlled by the paramejef

(C)

n+1

7)M({ie,lase,l; e ;ie,l rse,l}) . . . . .
The functional integral over the fieldQ; is done in the

1 [(p2Vv'? MY saddle-point approximation, yielding
_W(W e];[l fdxeé\(xe_Rievl(Se,l))"' |
—  w? pA-nvititp
H fﬁ(ﬂ;)z%%——ﬂ( 2) Jole'i
X 8(xs—Ri_ (Se1)) - (5)

1 2| - Her
K - A oT-1 -

—In{ exp —V! 1] dxQ; 5(X—R(s
Here, Z, is a normalization factor. The mean number of end < F( 2 X g ( ()

. . . . . . 1
links [M] is a monotonic function ofu?, and is approxi- "

mately given by[M]=(1/2)u?N (see[6]), and[---] de- (10
notes an average over the quenched disorder with the distri- _
bution Py, . The saddle-point equation féi; is

HSI’

- 2 . — .
<2 5(2—&(s))expn(“7lv'lf dxQf 1> 6(x— R(s)))>
s s n+1
X~ Ao : (1)

2 - ~
<exp(“7'vu ESRXs R<s>>)>

n+1
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Here, the angular brackets denote an average with the Stationarity of the free energy with respect to the gel frac-
(n+1)-fold replicated short-range interactid,. Within  tion Q yields

the saddle-point approximatiof); gives the disorder- )

averaged static density fluctuations of the ends of the poly- 1—Q:exp<'u I (1-Q)'"t-1)/. (15)

mers 2

i RN The gel fraction reflects the geometric character of the tran-
Q=2 X [{explik-Ri(s))], (12 sition: a nonzero gel fraction indicates the appearance of an
oS infinite network. This does not depend on the building blocks

. . of the network, but only on the number of polymers that are
where we have made @eplicated Fourier transform from connected at any end-link. For-2, Eq. (15 was first de-

X to k. To obtain Eqs(10) and(11) we replaced the func- : ; ;
tional in Eq.(9) by its (functiona) Fourier integral represen- (;Ir\é%(:ir:?eéhii[g]c;htexl[ of graph theory by Esland Reyi

tation, thus introducing the conjugate order-parameter fiel Equation(15) always has the solutio@ =0, correspond-
). We then performed the functional integrals o¢grand ing to the liquid state. Fop2>,u§=2/I(I —1) an additional
(); in the saddle-point approximation. Finally, we used onegg|ytion appears, which emerges continuously fr@rs 0.

of the saddle-point equations to elimindde. For |u?—u|<1 we have
A nonzero value of the order parameter with at least two
(replica components ok different from zero indicates the Q=I(pu2— ud). (16)

appearance of random static density fluctuations without

long-range translational order. These issues have been di§0 obtain an equation for the localization lengihwe de-
cussed in detail in4]. As in the case of cross-linking, the mand thatfﬁ be stationary with respect &, which gives, to
absence of long-range translational order shows up in a varkeading order,

ishing of the order parameter in the one-replica sector, i.e.,

Q. with only one (replica component ofk different from £:4(,u2—,u§) 1 (17)
zero vanishes at the saddle point, provided the excluded- &€ (I-1ué Ry

volume interactions have been chosen sufficiently strong to

prevent collapse. where RS (E<|R(L)—R(O)|2)TS') is the mean square end-

We postpone the solution of the saddle-point equation tqo-end distance(proportional to the radius of gyration
Sec. VI, and first discuss a variational apprOXimation basegquared’ which depends on the exp|icit form bfsr and will
on a simple intuitive picture of the amorphous solid statepe discussed in Sec. IV.
We expect that in the gel phase a nonzero fractprof To summarize, fol=2 the equation for the gel fraction is
polymers are localized at random positions. By assumingdentical for the cases of cross-linking and end-linking. For
Gaussian fluctuations with a typical lengthscélaround the  end-linking with|>2 we find an equation that reflects the
preferred positions, we are led to the following variational gjtered connectivity. As expected, the gel fraction is indepen-
ansatz forQ)(k) dent of the chain statistics. The critical concentration of end-
links ,u§ depends on, whereas the critical exponents for
— i w2 Q and ¢ depend neither oh nor on the chain statistics. The
k) =(1-Q) i o+ QI xn_ ke 0€XP — ?Z‘o LSk statistics of a single polymer determines only a semimicro-
(13)  scopic length that sets the scale 6
It is tempting to enquire why a solidification transition
The second term reflects the fraction of ends that are part gfhould occur for the case of end-linking witk 2, in which
the infinite cluster. Thes function ensures macroscopic case the end-links merely join pairs of polymers, end to end.
translational invariance. The first term in Ed.3) accounts However, our model of end-linking has no saturation, in the
for those polymers that are still fluid. sense that there is no prohibition on polymer ends participat-
The gel fractionQ and the localization length are varia- |ng in more than one end-link. This is not anticipated to be
tional parameters, which are determined by a minimizatiorfignificant forl=3, for which saturation does not prohibit
of fS. First, we insert the full ansatz, including both terms, (nonlineay network formation. However, it is crucial for the
into Eq.(10). Next, we expand the exponential of the second(Physically less importantcase ofl =2, for which end-
term, generating a Landau-Ginzburg free energy for thé!nklng with saturation would permit only the formation of
order-parameter field. The coefficients in this expansion aréinear assemblies of macromolecules and, hence, would not
the density correlations of a single polymer, e.g.,allow for network formation.
(exp(i & 1={_,ki-R(s;))). From translational invariance we
know that(exp(i ={_;k;-R(s)))* 8 . o- Rotational invari- IV. RODS WITH A FINITE BENDING ENERGY

ance is used to calculate the momentsiotk;- R(s;) To calculate the radius of gyration, one has to choose a
H particular short-range interaction. As an example, we review
(ki-R(s)kj-R(sj))=3ki-kj(R(s))-R(s)));*. (14  the wormlike chain model, which was introduced by Kratky
and Porod 10]. We follow the approach of Saito, Takahashi,
Near the transitioné ! is expected to be small, and it is only and Yunaki7]. The wormlike chain is a simple model, but is
necessary to calculate terms to orger. rich enough to interpolate between the limit of totally stiff

2 Nn
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chains, for which it yields the length of the radfor Ry, and (A(u(sy)))

the limit of long flexible chains, for which it yieIdRéocL in

agreement with the Gaussian chain model. The polymer is _ Jdugduydu p(uy,L;uy,81)A(Uy) p(Uy 813U, 0)
represented by a cuni(s) in three-dimensional space that JSdugdu, p(u, ,L;ug,0) ’
is parametrized by the arclengtse[OL], such that 22)

|u(s)|=|dR(s)/ds|=1. This implies that the total arclength
S=/§lu(s)|ds=L is constant, modeling a thin rod that can The transition probabilities satisfy the Fokker-Planck equa-
be bent but not stretched. The configuration of a single chaition for a diffusion process on a unit sphete|& 1)

R(s) is given by the location of one end vector, e8(0),
along withu(s) for all s, via

0
a_slp(ullsl;anSO):DL'Lp(ulusl;anSO)- (23

S
R(s)=R(0)+ fodsu(s). (18) The angular part of the Laplacian is denoted by, and
acts onu,. Equation(23) is to be solved with the initial
We assume a bending energy that can be expressed in terg@ndition

of derivatives of u(s): the straight configuration is the

ground state, and bending the rod costs energy according to P(U1,S0;Uo,So) = 8(Uo— Uy). (24)
A (L In three dimensions the solution is given by
Hpen== | dsu(s)|?, 19
bend_zfo | ( )| ( ) p(Ul,Sl;Uo,So)

whereu(s)=du(s)/ds. The bending elastic constant of the o _
:IZO e 11+ 1)D(sy SO)m:2_| Yim(U)YE(Ug), (25

chain is denoted by. (Kratky and Porod use a discretized
model. They consider a chain composed of many segments
of fixed lengthb and with a fixed angl® between adjacent whereY,,, are the spherical harmonics. The radius of gyra-
bonds. Then they perform the limit of small bond lengths andion then follows from
bond angles approaching The total polymer length is kept ) )
constant, as is the ratio/(1+co). Thereby they get the _ 2N Ve
same result folRy.) Higher-order derivatives ofi(s) de- (IR(L=RO)| >_< fo dsu(s)- fo ds'u(s )>
scribe interactions between more than two neighboring
monomers on a chain.

The probability for a conformatioqu(s)} of a single
polymer is given by the Boltzmann weight

L s
=2f0 dsfods {u(s)-u(s")), (26

in which (u(s)-u(s’)) can be calculated using the transition
probability and the orthogonality of the spherical harmonics

1 T
‘If({u,R(O)})=Eex - Efo dslu(s)|?|, (20a
(u(s)-u(s’))=%f du, dugdug dugp(u, ,L;ug,s)

1 (L
z= | dR(0 fDuex ——f dslu(s)|?| (20b
f ©) p( 4D Jo (s ) (200 X p(Us,S;Ugr,S")P(Ugr,S";Ug,0)Us-Ugr  (27)
kgT =exp(—2D(s—s")). (29
D= oA (200
Inserting Eq.(27) into Eq. (26) we find
where we assume that the end ved&{0) is uniformly dis- e 20L_14+2DL
tributed over the volume. To obtain expectation values of (|R(L)—R(0)|2):T (29

physical quantities that depend only on tangent veatoas

This result has the expected asymptotics: short, stiff chains

different arclengths, one defines a transition probability
(for which DL—0) have {|R(L)—R(0)|?)—L, whereas
long, flexible chains (for which DL—«) have

JU1Du exr( — iJSldSIU(S)|2
Ug 4D Js, (|R(L)~R(0)|3)—L/D.

uy 1 (st | )
du, | Duexg —-=| dslu(s)|
ug 4D Js, V. SHEAR MODULUS
(21

p(ulasl;uoyso)z

The aim of this section is to calculate the free energy of
that a chain that has tangent vectgy at positions, has elastic deformations within our variational approach. The
tangential vectou, at positions,. (A simple discussion for partition function is invariant with respect to spatially uni-
the case of Gaussian polymers is given in Chap. plaf.)  form, replica-dependent displacements of the monomers:
Then the expectation value of a quantiyu(s;)) can be R{(s)—R{(s)+u® (for =0, ... n). Hence, we expect
calculated from the transition probability via that almost-uniform displacements are low lying excitations,
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the energy of which goes to zero in the long wavelengthdensation(corresponding to end-linking Whereas the ex-
limit. To calculate their spectrum, we consider nonuniformperimental data reveal the same critical behavior for the
displacements of the thermodynamic degrees of freedomiscosity in the two systems, the critical exponérfor the

only: R{¥(s)—R{*(s)+u(R{(s)) (for @=1,...n). The static shear modulus in the gel phase is different for copoly-
a=0 replica generates the end-link distribution in the un-merization (~2) and polycondensationt{3) [12]. It is
strained system and, hence, is not displaced. unclear why the two linking mechanisms should produce dis-
Under this transformatioﬁiﬂﬁ&’ with tinct modulus exponentgl3]. One possible explanation is
_ the size of the critical regior{in which deviations from
80=0— O mean-field behavior may be observalplel]). The size of

this region depends on the distance between links along the
chain, and may possibly vary for different linking mecha-

= Z ; < (eiEgzlk"-U(Ri‘z(S))_ 1)ei ‘ZO k*-R(s) , (309 nisms.

n
i

:V% 21 K®-u(@) UK, . .. K+, ... k") VI. DISTRIBUTION OF LOCALIZATION LENGTHS

n In this section we apply the idea of solving the saddle-

. 8. point equation presented by Castillo, Goldbart, and Zippelius

2V2q§]2 ,1,52:1 K*-u(ak"- u(qy) [3,4] to the case of end-linking. The improvement of this
a*p approach reflects the possibility that in the amorphous solid
X(T(ko, oKy, . KB, LKD) state the localization length is not unique but instead has a

distribution.

The starting point of our calculation is the saddle-point

2\/2 > 2 k*-u(ds)k®-u(gz) equation(11). We are not able to find the general solution of
%1,z @=1 Eg. (11), and instead proceed with an ansatz for the self-

XK, .. K+, ey KD, (30p  consistent, viz,,
whereu(R{(s)) is the elastic displacement field, anly) is Q&:(l—Q)5&,b+Q5E,ow(|22). (34)

its Fourier transform. We restrict ourselves to displacement

fields u(R) that vary over lengthscales much larger

than the localization length ¢ and calculate Pparametrized by the variabl® and the functlonw(kz)
8ta=",(Q+ 80) — f,(Q) to second order ini. We find for ~ Here, we use the notatiok=3>7_.k* and k2= O|k“|2
the elastic free energy for two permutation invariant combmatlons {j{

Under fairly mild conditions, the technical restriction be-
ing thatw(z) must be analytic for Rej=0 and vanish suf-
ficiently fast at infinity, we can adopt a convenient alterna-
tive parametrization of); (see also Castillo, Goldbart, and
where ua=1(52uP+ ¢°u?) is the (linearized strain field,  Zippelius[3]):
and summation is implied over repeated Cartesian indices

5F{u}=%f d3r (B(u?®)2+ S(u?P—§62Pucc)), (31

a=1,2,3. To lowest nontrivial order i and¢ 2 the shear % .
modulusS is given by Qp=(1-Q) ¢ vt Qﬁ,;ofo drp(r)exp —k?/27).
. 12(1-1)2 __Rg - (35
~v'B 1152 Q* ?' (32)

This ansatZ35) can be motivated as follows. As in the pre-

Inserting Eqs(16) and (17) we find vious sections, we assume that each end of a polymerié
either delocalizedwith probability 1— Q) or localized(with
N 4 (u? Mc)4 probability Q) at a random mean position. About this posi-
kBT72 Mf;l (33 tion it performs independent Gaussian thermal fluctuations,

characterized by an inverse square localization length

This implies a critical exponent of 4, independent of ther(i,s), which depends oni(s) and is not unique, in contrast
statistics of a single polymer. In Rg#] we obtained a criti- to the previous sections. The assumptions thathe mean
cal exponent of 2 because the variational ansatz that waositions are independently and uniformly distributed
used in[4] did not take into account the fraction of delocal- through the volumejii) the localization lengths are indepen-
ized monomers, 4 Q, in the amorphous solid stafsee Eq. dently  distributed with  probability — density p(7)
(13)]. There is also a singular contribution to the bulk modu-=2&3p(£2), and(iii) the replica symmetry is not broken
lus which is, however, dominated by regular contributions oftogether lead to the ansatz hypothesized in B&). Thus
the uncross-linked systerfthat we are unable to calculate p(7) can be interpreted as the distribution of inverse square
from f,). localization lengths.

Mechanical measurements have been performed on copo- By inserting this ansatz into the self-consistency condi-
lymerization (corresponding to cross-linkingand polycon- tion, Eq.(11), we obtain
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(1-0) 333+ 0850 drp(rlexp(~E27)
= Yo ul
=e(u21/2)[(1—Q)’_1—1]5(]:0_;_e(uzlll)[(l—Q)l_l—llME:() (2 =5

j=xJ 2

where  k=«(M,I) is the integer  satisfying g2 . 0
M/(1-1)<k<(M/(I—-1))+1, and thea; , are defined by 7H(0)=(1—0)H(0)—f do'I1(6—6")II(0")+O(e).
the following recursive structure: 0

(40)
k .
Sf1=1=(k=D\[1=1} .~ This is the same equation as that derived previously by
— 1 \k-i A
ak’l_gl (=1 ( k—i )( i )VA" (379 Castillo, Goldbart, and Zippeliug3] for cross-linked poly-
mers. We conclude that the distributibh( §) is a universal
i—r+1 feature of systems of randomly linked polymers, independent
a, = E aj 18— -1, (37 of I and of whether the system is end-linked or cross-linked.
=1 The asymptotics ofI(6) are given by
a; =0 (for r>i), (370 co e 20 if 6<1;
~ mo M(6)=1 3 ap— §)eag o>l (4D
An= | I dkioug, [ dry--drp(r)- P 5
o2 25~ iem oG The coefficientsa=4.554 ando=1.678 can be obtained by
xe K. . .e kmlszg e¥i=1 kiR, (37d  the numerical solution of Eq40). Thus we find for the order
parametei);
It can be shown by explicit calculation that all terms in- e ¢ A
cluded inHy, are proportional ta%, 5. So, by passing to the Q= ( 1— —— | S ot —= Sk ow(V2k?/€), (429
limit §°— 0, via a sequence for whidji= 0, we can identify =1 == 1=1""
from Eq. (36) the self-consistency condition for the gel frac- . X
tion Q, viz., w(kz)zf doTI(g)e 72, (42b)
pl 0
1—Q=ex;{7((1—Q)'1—1) : (38)  The variational ansatz13) is recovered by approximating

the true distributiorp(7) by &(7— €/2).
which is the same as that derived from the variational calcu-
lations in Eq.(15).
We now turn to the distribution of localization lengths, VIl. CONCLUSIONS

and restrict our attention to the vicinity of the transition re-  \y/e have addressed the equilibrium properties of systems
gime in the solid SFatQGEZ(MZ—Mg)/M§<1_]1 where the  of polymers that have been permanently end-linked at ran-
gel fraction is smalli.e., Q<1) and the localization lengths gom, by developing appropriate techniques from the statisti-
are large(i.e., typically§>Rg). Furthermore, we restrict our- ca| mechanics of systems with quenched disorder. We have
selves to the case of a Gaussian polymer with persistencgnsidered the general case in which each end-link brings
length/, for which the short-range Hamiltonian is togetherl ends of polymers. We have allowed for a broad
dR(s) class of polymeric systems, including flexible, semiflexible

3 (L .
Hsr:z_/fo ds s (39) and rigid-rod molecules.

We have established that beyond a certain critical density
of end-links, of order one per polymer, the system undergoes
We adopts units of length in whiciL/3=1. We expect a continuous equilibrium thermodynamic phase transition,
scaling near the critical point, and introduce a scaling funcfrom a liquid statgin which all polymers are delocalizgtb
tion I1( 6) via p.(7)=(2/e)I1(27/€). The hypothesized scal- an amorphous solid state which a nonzero fraction of the
ing form is motivated by the results from the variational monomers are localized about preferred positions, those po-
calculations in the preceding section and, below, is showsitions being aperiodically distributed in spacEor techni-
actually to solve the saddle-point equation. cal reasons, our results are restricted to the transition regime.
By expanding Eq(36) to lowest order ine, we arrive at By using a simple variational hypothesis for the amor-
an integro-differential equation fdid (6): phous solid order parametén terms of the fraction of lo-

2
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calized polymers and a single characteristic length that deparameter, which allows for a statistical variation in the de-
scribes the thermal position fluctuations of the monomers gree to which the polymers are localized, we find an exact
we have determined that the fraction of localized polymerdreplica-symmetrig solution of the order parameter self-
(the so-called gel fractignsatisfies a simple equation. This consistency condition. As well as confirming the equation for
equation constitutes the extensidto the case of end- the gel fraction obtained from the simpler variational hypoth-
linking) of a result first obtained in the context of random esis, this approach yields a self-consist@mnlinear integro-
graph theory(i.e., mean-field percolatiorand subsequently differentia) equation for the distribution of localization
emerging from the replica-statistical mechanics of vulcadengths. Upon suitably scaling the distribution with(di-
nized polymer systems. From it, we demonstrate how the gelerging characteristic length, this equation is seen to be in-
fraction vanishes, as the amorphous solidification transitiomlependent of the end-link functionality and, indeed, identical

is approached from the solid side. to that obtainedand solved earlier for the case of cross-
Within the context of this variational hypothesis, we havelinked polymeric systems.
also determined that the characteristic leng#h., the local- Our results reveal a broad universality to the phenomenon

ization length diverges at the transition point coming from of amorphous solidification in polymeric systems: whether

the solid side. In addition, by considering the free-energythe random constraints are end-links of arbitrary functional-

cost of imposing a long-wavelength elastic shear strain, wéy or cross-links, and whether the constituent polymers are

have constructed the elastic shear free energy of the amoitexible, semiflexible, or rigid, the essential features of the

phous solid state, and calculated the shear modulus. Themorphous solid that emerges upon sufficient linking—the

shear modulus is found to vanish at the transition from thecritical behavior of the gel fraction, the characteristic local-

amorphous solid state to the liquid state. ization length, the distribution of localization lengths, and
We find that the critical behavior of the gel fraction, the the shear modulus—are invariant.

inverse localization length and the shear modulus are univer-

sal, in the sense that they are are independent of the end-link

functio_nality and are the same as those found for the case of ACKNOWLEDGMENTS
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